
 

46 

 

 

 

Volume: 11, Issue: 1, January-March 2021 

 

INTERNATIONAL JOURNAL OF RESEARCH IN SCIENCE & TECHNOLOGY 

  

 

Employability Of Unsupervised Machine Learning 

Techniques For Elimination Of Electrodermal Activity 

Artefacts During And Post Surgeries   

Saksham Agarwal 

Montfort Sr. Sec. School, Ashok Vihar, Delhi 

 

Paper Received: 10th February, 2021; Paper Accepted: 28th March, 2021;  

Paper Published: 29th March, 2021 

 

DOI: http://doi.org/10.37648/ijrst.v11i01.006 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

How to cite the article:  

Saksham Agarwal, Employability Of 

Unsupervised Machine Learning 

Techniques For Elimination Of 

Electrodermal Activity Artefacts During 

And Post Surgeries, IJRST, January-

March 2021, Vol 11, Issue1, 46-55, DOI: 

http://doi.org/10.37648/ijrst.v11i01.006 

INTERNATIONAL JOURNAL OF 

RESEARCH IN SCIENCE & 

TECHNOLOGY 

e-ISSN:2249-0604; p-ISSN: 2454-180X 



 

47 

 

 

 

Volume: 11, Issue: 1, January-March 2021 

 

INTERNATIONAL JOURNAL OF RESEARCH IN SCIENCE & TECHNOLOGY 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                                    

 

INTRODUCTION 

As the collection of physiological time 

series data in complex, naturalistic 

environments become more prevalent, the 

data are increasingly susceptible to 

unexpected and uncontrollable sources of 

artefacts and interference. While many 

artefacts can be easily identified by visual 

inspection with minimal training, 

automating this process is a challenge. 

Existing techniques, such as thresholding 

signal values or derivatives, are not robust 

across different datasets and subjects. 

Supervised learning, where machine 

learning models distinguish between signals 

and artefacts using labelled datasets, has 

shown promise in various contexts. 

However, this approach is labour-intensive 

and impractical for artefact detection, as it 

necessitates manual labelling of each small-

time segment across numerous training 

datasets. 

Overcoming the challenges of artefact 

detection in physiological time series data is 

a complex task. The clear visual 

detectability of artifacts in most 

physiological time series data suggests that 

artifacts differ fundamentally from true 

signals. Our research introduces a novel and 

promising solution: unsupervised machine 

ABSTRACT 

 

Detecting and removing artefacts is crucial in data preprocessing pipelines for 

physiological time series data, mainly when collected outside controlled experimental 

settings. The fact that such artefacts are often easily identifiable visually suggests that 

unsupervised machine learning algorithms could be practical without requiring manually 

labelled training datasets. Current methods are often heuristic-based, not generalizable, or 

designed for controlled experimental settings with fewer artefacts. In this study, we 

evaluate the effectiveness of three unsupervised learning algorithms—Isolation Forests, 

One-Class Support Vector Machine, and K-Nearest Neighbor Distance—in removing 

heavy cautery-related artefacts from electrodermal activity (EDA) data collected during 

surgeries involving six subjects. We defined 12 features for each half-second window as 

inputs to the unsupervised learning methods. We compared each subject's best-

performing unsupervised learning method to four existing EDA artefact removal 

methods. The unsupervised learning method was the only approach that removed the 

artefacts across all six subjects. This approach can be easily extended to other types of 

physiological data in complex settings. 
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learning methods. These methods address 

the time and labor constraints of traditional 

approaches by eliminating the need for 

labeled training sets and enabling the 

detection of complex patterns that are not 

explicitly defined. This innovative approach 

opens up new possibilities in the field of 

physiological data analysis, sparking 

curiosity and interest among researchers and 

data scientists. 

 

Figure 1. Raw EDA data for Subject 4 showing zoom-ins of different artifacts, where there is 

also true EDA data  mixed in. 

This paper demonstrates the effectiveness of 

unsupervised learning methods for detecting 

artefacts in electrodermal activity (EDA) 

datasets using just 12 well-defined features. 

The data were continuously collected during 

lower abdominal surgery in six human 

subjects. They were prone to motion and 

surgical cautery-related artefacts, which 

caused significant and visible deflections. 

Although these deflections are apparent, 

there are also periods of intact but shifted 

EDA between large deflections, and the start 

and end of each deflection are not marked. 

Additionally, deflections' magnitude, 

sharpness, and direction vary across subjects 

and datasets. This complexity underscores 

the depth and significance of the problem we 

are addressing. Figure 1 illustrates an 

example dataset, highlighting specific 

artefact characteristics. 

Existing methods for artefact removal from 

EDA data are limited and specific to the 

datasets on which they were developed [4-

8]. These datasets were typically collected in 

fully controlled or semi-controlled 

experimental settings, and none exhibit the 

same degree of artefact presence as in our 

study. Consequently, more than these 
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existing methods are needed to remove 

artefacts from our data altogether. We did 

not include supervised learning methods in 

our study to emphasise practicality and 

robustness across diverse research settings. 

We evaluated three unsupervised machine 

learning methods for artefact detection: 

isolation forest [9], K-nearest neighbour 

(KNN) distance [10], and one-class support 

vector machine (SVM) [11]. We defined a 

set of 12 features for each half-second 

window to use as inputs for all the 

unsupervised learning methods. These 

features were derived from those used in 

existing methods, with additional features 

based on visible differences in the data. We 

also compared the performance of these 

unsupervised methods with existing 

methods. Our findings indicate that the 

unsupervised machine learning algorithms, 

utilizing the defined features, successfully 

removed heavy artefacts from EDA data 

across all six subjects, whereas the existing 

methods did not. 

In the Methods section, we detail our 

datasets, the features we defined, and our 

implementation of the unsupervised learning 

algorithms. The Results section presents the 

EDA datasets before and after artefact 

removal using all methods included in the 

study, including existing methods. Finally, 

in the Discussion and Conclusion, we 

explain the implications of our findings and 

outline our plans for future work. 

METHODS 

 A. Data 

This study utilizes EDA data recorded from 

six subjects (two female), collected under a 

protocol approved by the Massachusetts 

General Hospital (MGH) Human Research 

Committee. All subjects were undergoing 

laparoscopic urologic or gynecologic 

surgery at MGH. EDA data were recorded 

from two digits of each subject's left hand at 

256 Hz using the Thought Technology 

Neurofeedback System [12], starting from 

before the induction of anaesthesia to just 

after extubation. Figure 1 provides an 

example of raw data from one subject. The 

primary sources of artefacts were 

movements at the beginning and end of the 

recording, including positioning and surgical 

cautery. Each instance of turning the cautery 

on or off caused a visible deflection in the 

data. All data were analyzed using Matlab 

2020b. 

 B. Features and Unsupervised Learning 

Methods 

We defined 12 features based on guidance 

from the literature, listed in Table 1. These 

features were computed for each 0.5-second 

window (128 samples) for each dataset to 

capture the timescale of individual artefacts. 
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These feature vectors were then fed into 

three unsupervised learning methods. 

- KNN Distance: This method computes the 

average distance between each feature 

vector and the nearest feature vectors in the 

dataset [10], using Euclidean distance and a 

K of 50. Artifactual data is hypothesized to 

have greater KNN distances than regular 

data.   

- One-Class SVM: Similar to regular SVM, 

the one-class SVM is trained on data 

labelled as a single class representing 

'normal' data and tested on data that may 

contain anomalies, which are assumed to be 

rare [11]. The one-class SVM was trained on 

90% of the data, excluding the 10% with the 

most significant KNN distance.   

- Isolation Forest: This method is similar to 

random forest, but each feature vector is 

scored based on the average path length 

required to isolate it as a leaf in a forest of 

decision trees. Artifactual data is 

hypothesized to have shorter path lengths 

than average data [9]. Each isolation forest 

consisted of 100 decision trees, and isolation 

scores were computed as the median of 10 

forests. 

TABLE I. FEATURES 

All three unsupervised learning methods 

produced scores for each data window, 

quantifying the bizarre nature of each 

segment. The isolation forest scores (IF 

scores) were inverted to align with the 

directionality of the other methods. The final 

step was to determine the artefact thresholds 

for each subject. This process leveraged the 

insight that data portions labelled as 

artefacts decrease non-continuously in 

discrete jumps as the threshold increases. To 

utilize this, the skewness and kurtosis (3rd 

and 4th moments) of the inter-artifact 

interval distribution were computed across 
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various thresholds. The inter-artefact 

interval distribution becomes more skewed 

as the artefact artefact proportion decreases. 

Thresholds corresponding to local maxima 

in skewness and kurtosis (indicative of 

significant changes in labelled artefacts) 

were tested. A binary search method within 

this set of thresholds streamlined the 

process, requiring the evaluation of at most 

five thresholds per method for each subject. 

The final threshold was chosen based on 

visual inspection to ensure artefact removal. 

After identifying and removing artefacts, 

gaps were filled using linear interpolation to 

maintain continuous data. Any 'islands' of 

data shifted due to artifactual deflection 

were adjusted to match the linearly 

interpolated mean of the data at that time. 

Our method was then compared to three 

existing methods: variational mode 

decomposition, wavelet decomposition, and 

heuristic rule-based thresholding of data 

derivatives. 

  

 

 

 

 

 

 

RESULTS 

 

Figure 2. Uncorrected and corrected EDA for all 6 subjects. 
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Table II summarizes the results from all 

three unsupervised methods across six 

subjects. The artefact proportion (from 0 to 

1) and the maximum contiguous artefact 

length are reported for each subject and 

method. The best method, determined by the 

minor proportion of artefact removed and 

the shortest contiguous artefact length, is 

highlighted in bold for each subject. 

Isolation forest was the best method for 3 

out of 6 subjects, KNN distance and one-

class SVM each for one subject, and all 

three methods were identical for one subject. 

Across all subjects, artefact proportions 

ranged from under 1% to just above 10%, 

and the longest contiguous artefacts ranged 

from 6 seconds to 106 seconds. 

TABLE II. SUMMARY OF RESULTS 

Figure 2 shows all six subjects' uncorrected 

and final corrected EDA data. Although the 

degree of artefact varied, we successfully 

removed the artefact in all cases. Figure 3 

illustrates the use of kurtosis of the inter-

artifact interval distribution to select the 

optimal threshold for Subjects 2 and 4. The 

local maxima of kurtosis shown in Figure 3 

were tested, and the highlighted values were 

chosen as the final thresholds based on 

visual inspection of the corrected EDA data. 

Finally, Figure 4 compares our method with 

several existing methods for Subjects 2 and 

4. Variational mode decomposition and 

wavelet decomposition were ineffective, 

heuristic rule-based thresholding of the EDA 

signal's derivative was partially effective, 

and only our method was fully effective in 

artefact removal. 
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Figure 3. Use of kurtosis of inter-artifact interval distribution to select thresholds for Subjects 2 

and 4. IF score refers to isolation forest score. 

 

Figure 4. Comparison between different methods for Subjects 2 and 4. 

CONCLUSION 

In this study, we applied unsupervised 

machine learning methods combined with 12 

features to remove heavy cautery and 

movement-related artefacts from six 

subjects' electrodermal activity (EDA) data 

collected during surgery. We evaluated three 

unsupervised learning techniques—Isolation 

Forest, K-Nearest Neighbors (KNN) 

distance, and one-class Support Vector 

Machine (SVM)—against existing methods 

such as variational mode decomposition, 

wavelet decomposition, and hardcoded 

heuristic rules. For all six subjects, the 

unsupervised learning methods were the 



 

54 

 

 

Volume: 11, Issue: 1, January-March 2021 

 

INTERNATIONAL JOURNAL OF RESEARCH IN SCIENCE & TECHNOLOGY 

only ones that completely eliminated the 

artefacts. We identified the most effective 

unsupervised learning method for each 

subject by minimizing the amount of 

genuine EDA signal removed along with the 

artefact. 

This approach is significant because it does 

not require manual labelling of a training 

dataset yet effectively removes heavy 

artefacts. Additionally, our method 

preserves as much of the accurate EDA 

signal as possible, even when interspersed 

with artifact-laden sections. In visibly 

intense artefacts, the actual proportion of 

data detected as artefacts was around 10% or 

less. In contrast, thresholding-based methods 

would likely remove a significant portion of 

the data, including accurate EDA signals. 

Most existing methods employ 

decomposition algorithms that can affect the 

entire signal, including regions with no 

artefacts. Our process, on the other hand, 

leaves non-artifact areas of the raw data 

unchanged. Most artefacts were removed in 

concise segments, with the longest 

continuous artefact lasting under 30 seconds 

for five out of six subjects and under 20 

seconds for three. 

EDA analysis typically focuses on two 

components operating at different 

timescales: tonic and phasic. The tonic 

component drifts slowly over tens of 

seconds to minutes, which can be easily 

interpolated when artefact sections are short. 

Short data durations (less than 30 seconds) 

for phasic EDA will likely contain a 

maximum of a few pulses. Moreover, 

dynamic methods can compute the mean and 

standard deviation of pulse rates over time, 

even if a few pulses are missing in short 

segments, and account for this missing data 

in their uncertainty estimates. 

Our method utilized only 12 features for 

each window, many overlapping with 

existing methods. However, our approach 

allowed the AI to "learn" the differences 

between artefact and signal for each dataset. 

The physiological characteristics informed 

these 12 features of EDA data. This method 

can be expanded to similar classes of "easily 

visible" artefacts in other physiological data 

modalities, such as ECG and EEG. The 

physiological knowledge and types of 

artefacts present in those data can guide 

custom feature definitions. 
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